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Abstract To obtain insights into the factors that govern the
analogy between HCN and its isostructures, HXY where
X = C, Si, Ge and Y = N, P, As, the electronic and
structural properties of these species in ground, cationic and
anionic states at the QCISD, MP2 and B3LYP levels with
6-311++G** basis set and the first exited state with TD-
B3LYP method have been presented. The results suggest
that there are some correlations between structural and
thermodynamic properties of the smallest member of this
group (HCN) and heavier congers. The results of compu-
tation at these levels also predict the stability of HCAs in
the ground state and HCN, HSiN and HGeN in the cationic
state from the energetic point of view. Molecular electro-
static potential map inspection shows that in HXN species
nucleophilic region positions on N atom but in HXP and
HXAs molecules by increasing the size of central atom
nucleophilic region shifts from region near X atom toward
terminal atom. Finally, the nature of bonds of HXY
moleculs are systematically studied through atoms in
molecules (AIM) and natural bond orbital analyses (NBO).

Keywords AIM . B3LYP. Dual descriptor . HCN .MESP.

MP2 . NBO . QCISD . TD-B3LYP

Introduction

A major reason for the widespread interest in the study of
stable compounds with multiple bonds between heavier
main group elements (valence electrons of principal
quantum number ≥3) is that the frequent new findings
continue to challenge widely accepted rules of bonding [1].
Especially the so-called double bond rule [2–4] which relates
to the supposed inability of elements of principal quantum
number ≥3 to form multiple bonds. However, due to the
detection of the heavy elements in the interstellar medium
and after discovery of the first phosphaalkyne [5] (HCP) in
1961 renewed attention has been given to the gas phase
chemistry of heavy elements such as: silicon, germanium,
nitrogen, phosphorous and arsenic compounds by analogy
with the carbon chemistry. Hydrogen cyanide and hydrogen
isocyanide are basic chemical compounds of great importance
for inorganic and organic chemistry. They were detected in
interstellar clouds and a number of comets, including the
Hale–Bopp comet [6, 7]. Furthermore, the identification of
Si≡N in the interstellar medium [8] gives the first evidence
of a link between the interstellar chemistry of silicon and that
of nitrogen. There exists also a reliable spectroscopic constant
on a series of related compounds (HSiN) [9].

After discovery of the HCP [5], in 1981 the first stable
compound involving a heavier element (tBuCP) was synthe-
sized [10]. Mes*CAs (Mes*=2,4,6-tri-tert-butylphenyl) is
only one example of a stable arsaalkyne that was structurally
characterized in 1986 [11]. The thermal stability of Mes*CAs
is mainly due to the bulky Mes* group. A further stabilizing
effect may be the interaction of the aryl π system with the
C ≡As triple bond, as found in anionic phosphaalkynes.
The only other known arsaalkyne, CH3CAs [12], is unstable
at room temperature and the parent compound, HCAs, is still
unknown.
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Although the characteristics of compounds with C≡N
triple bonds (nitriles) have been well-known for a very long
time, this is not true for the corresponding phosphorus-,
arsenic-,silicon- and germanium- containing analogues and
the capacity of second- and third-row atoms to form multiple

bonds has been an intriguing problem in chemistry [13].
Yanez et al. have worked on the characterization of the
intrinsic reactivity of low-stability compounds, which contain
second-, third-, and fourth-row atoms such as P, As, Si, Ge,
and Sn [14–17]. Along this line for the first time, quantitative
information, from both the experimental and the theoretical
point of view, on the gas-phase acidity of HCP, CH3CP,
HCAs, and CH3CAs have been reported in 2002 [13].

On the other hand, quantum chemistry computations
generate increasingly large amounts of data that call for
more attention to systematization. Such systematization is
facilitated by analysis of electronic wave functions [18].
Modern approaches to analysis of electronic wave functions
are the definition of properties such as atomic charges,
energies, valencies, bond orders, specialized orbitals,
population analysis, and frequencies.

The aim of the present report is to complete description
of the properties and some correlations to the presented
evidence at the introduction. Such a scope necessarily
requires a quantitative study of the HXY molecules with
computational quantum chemistry methods and wave
function analyses, which are attractive approaches for
understanding the structure and bonding in the heavier
main group elements and systematization of obtained data.

Computational methods

Geometry optimization for neutral, cationic and anionic
states of HXY molecules were performed by using QCISD

Table 2 Nature and number of σ and π bonds of X≡Y (BD-Nature),
and existing lone pair on atoms of anionic state (LPA) from NBO
analyses for ground (G), cationic (C) and anionic (A) states

X≡Y BD-Nature

G C A LPA

CN 2c-6e 2c-5e 2c-6e H (1e)
2π, 1σ 1.5π, 1σ 2π, 1σ -

CP 2c-6e 2c-5e 2c-5e C (1e)
2π, 1σ 1.5π, 1σ 1.5π, 1σ P (1e)

CAs 2c-6e 2c-5e 2c-5e C (1e)
2π, 1σ 1.5π, 1σ 1π, 1.5σ As (1e)

SiN 2c-6e 2c-5e 2c-4e Si (2e)
2π, 1σ 1.5π, 1σ 1π, 1σ N (1e)

SiP 2c-6e 2c-5e 2c-5e Si (2e)
2π, 1σ 1.5π, 1σ 1π, 1σ P (1e)

SiAs 2c-6e 2c-5e 2c-4e Si (2e)
2π, 1σ 1.5π, 1σ 1π, 1σ As (1e)

GeN 2c-6e 2c-5e 2c-4e Ge (2e)
2π, 1σ 1.5π, 1σ 1π, 1σ N (1e)

GeP 2c-6e 2c-5e 2c-4e Ge (2e)
2π, 1σ 1.5π, 1σ 1π, 1σ P (1e)

GeAs 2c-6e 2c-5e 2c-4e Ge (2e)
2π, 1σ 1.5π, 1σ 1π, 1σ As (1e)

Table 1 Optimized structural parameters and electron density at bond critical point from AIM analysis at MP2, B3LYP and QCISD levels for
HGeY group

MP2 B3LYP QCISD 

M MS R1 R2 A1 1 2 R1 R2 A1 1 2 R1 R2 A1 1 2 

HGeN 

G 1.53 1.70 180.00 0.13 0.17 1.52 1.64 180.00 0.14 0.20 1.53 1.66 180.00 0.13 0.18 

A 1.62 1.84 95.39 0.11 0.13 1.65 1.77 99.32 0.10 0.16 1.64 1.78 100.97 0.10 0.15 

C 1.51 1.75 180.00 0.14 0.17 1.53 1.72 180.00 0.14 0.18 1.53 1.75 174.83 0.14 0.12 

ES - - - - - 1.61 1.84 100.37 0.11 0.14 - - - - - 

HGeP 

G 1.52 2.04 180.00 0.13 0.12 1.52 2.01 180.00 0.14 0.13 1.53 2.03 180.00 0.13 0.12 

A 1.61 2.16 99.51 0.11 0.11 1.63 2.20 99.54 0.11 0.11 1.62 2.20 98.81 0.11 0.10 

C 1.52 2.11 180.00 0.14 0.12 1.53 2.10 180.00 0.14 0.12 1.52 2.11 180.00 0.14 0.12 

ES - - - - - 1.60 2.33 96.25 0.11 0.09 - - - - - 

HGeAs 

G 1.53 2.15 180.00 0.13 0.10 1.53 2.11 180.00 0.14 0.08 1.53 2.14 180.00 0.13 0.10 

A 1.61 2.28 98.28 0.11 0.10 1.62 2.31 98.36 0.11 0.09 1.62 2.33 97.60 0.11 0.09 

C 1.52 2.21 180.00 0.14 0.10 1.53 2.21 180.00 0.14 0.10 1.53 2.23 180.00 0.14 0.10 

ES - - - - - 1.56 2.28 125.14 0.13 0.09 - - - - - 

  M, MS, G, A, C and ES stand for molecule, molecular state, ground, anionic, cationic and excited states, 

respectively. 

R(P)1 R(P)2

A1  
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[19], MP2 [20–24] and the density functional theory (DFT)
[25, 26] with the B3LYP [27–29] hybrid functional
methods, as implemented in Gaussian03 [30] with popular
6-311++G (d,p) basis set [31]. The optimized geometries
were characterized by harmonic analysis, and the nature of
the stationary points was determined according to the
number of negative eigenvalues of the Hessian matrix.
Singlet first excited state structures were obtained at the
CIS/6-311++G(d,p) [31, 32] and TD-B3LYP/6-311++G(d,
p) [31, 33] levels. The same level of theory was also
utilized for obtaining the wave functions of all the
optimized structures.

The bonding features of all the studied species were
analyzed by means of the natural bond orbital (NBO) and

the natural population analyses (NPA) [34, 35]. We have
also analyzed the nature of the bonding by using the atoms
in molecules (AIM) [36] approach. Reactivity of different
atoms in studied molecules are investigated by using
molecular electrostatic potential (MESP) [37, 38], Fukui
functions (FF) [39, 40] and dual descriptor (Δf ) [41]. The
FF and Δf were calculated as follows:

fk
þ ¼ qK N þ 1ð Þ � qKðNÞ FF for nucleophilic attack ð1Þ

f �k ¼ qKðNÞ � qK N � 1ð Þ FF for electrophilic attack ð2Þ

Δf ¼ f þ � f � Dual descriptor ð3Þ

Δf � rLUMOðrÞ � rHOMOðrÞ Dual descriptor ð4Þ
where qk is the electronic population of atom k in a
molecule and ρ(r) is the electron density.

Results and discussions

Optimized structural parameters for the four molecular
states and electron density at bond critical points from AIM
analysis along with the available experimental data are
depicted in Table 1 for HGeY group and in (Supplementary

Fig. 1 NHOs in ground and
first excited states at B3LYP
level (a) hC of HCN molecule,
and (b) hGe of HGeAs molecule

Fig. 2 Stability trends of the optimized HXY molecules in ground
(G) state, according to their HOMO-LUMO energy gaps’
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material Table 1S) for the HCY and HSiY groups. Good
agreement is found between the experimental and the
calculated data. Except anionic HCN, all anionic and first
excited states of studied molecules are bent. Except for
cationic HSiN, HSiP and HGeN at QCISD level all ground
and cationic structures are linear. These observations are
confirmed by NBO analyses. These analyses show that in
cationic and anionic forms the bond order of X ≡Y bonds
reduces and as a result the bond lengths increase. There are,
in addition, lone pair molecular orbitals on central atoms of
anionic forms and these are the cause of deviation from
linearity according to Walsh's rule [42–45]. All H-X bonds
have two center-two electron (2c-2e) character. Details of
the NBO analyses for X ≡Y bonds are given in Table 2.
Except for minor difference in anionic Ge≡ P and Ge ≡As
which have different distorted triple bond, the NBO
results of the other cases are the same for three levels of
computation. First excited state bent structures can be
explained by bending of natural hybrid orbitals (NHOs)
from line of centers in comparison with linear ground state
structures. As an example NHOs of carbon atom (hC) of
HCN molecule and germanium atom (hGe) of HGeAs
molecule in ground and first excited states are visualized
by NBOView [46] and depicted in Fig. 1.

Molecular properties

For candidate molecules in ground, first excited, cationic
and anionic states different molecular properties (e.g.,
ionization potential (IP), electron affinity (EA), polarizabil-
ity, dipole moment (µ), and HOMO-LUMO energy gap

(HLEG) are calculated. The HLEG is a sensitive quantity to
probe the stability [47]. In accordance with this quantity
the stability trends of optimized HXY molecules with
post Hartree-Fock (QCISD and MP2) and B3LYP meth-
ods are depicted in (Fig. 2) for ground state and for first
excited, cationic and anionic states in (Supplementary
material Fig. 1S). The existing experimental data for HCN
[6, 7, 48], HCP [5, 49], HSiN [9] and HCP+ cation radical
[50] species confirm the stability of these species in their
ground and cationic states. The stability trends of optimized
HXY molecules in their ground, cationic, anionic, and first
excited states derived from the HLEG show that the HLEG
of some of HXY molecules are in the range of the
calculated values of HLEG of stable HCN, HCP, HSiN,
and HCP+ species. It can be concluded that HCAs in it’s
ground state and HCN, HSiN, and HGeN species in their
cationic states can exist from the energetic point of view
at these levels of computation.

The trends of variation of IP, EA, polarizability and µ are
given in (Supplementary material Figs. 2aS-2hS). Calculat-
ed vertical and adiabatic IPs and EAs and those obtained
from Koopman’s theorem (KT) for HCY, HSiY and HGeY
species are compared in (Supplementary material Figs. 2aS-
2fS). Although the calculated values of IPs and EAs from
these three approaches have the same trends the corres-
ponding values are different. Vertical and adiabatic IPs are
the same for all HXY species while, except HCN,
calculated vertical and adiabatic EAs have different values.
A geometric comparison of ground, cationic and anionic
states shows that optimized ground and cationic states have
linear structures but optimized anionic states have bent

Fig. 3 Electrostatic potential
plots of HXY molecules in the
ground state mapped onto
electron density values with
isodensity values of
0.00004 a.u.
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structures. As pointed out in the literature [51] different
optimized geometrical structures of neutral and anionic
states are one of the reasons for the difference in adiabatic
and vertical EA values. Inspections in the calculated

properties, in addition, show that, except for HGeY group
with QCISD method, by increasing the size of molecules
the IPs decrease in ground and first excited states but the
polarizabilities have reverse trends.

An assessment of data in (Supplementary material
Fig. 2gS) show that ground states of HXN molecules have
dipole moment greater than 2.5 Debye. By substitution of N
with P and As atoms, dipole moment of HXP and HXAs
molecules decreases in comparison with HXN molecules.
In the structures with µ≥2.5 D the electronegativity dif-
ference of Y and X atoms is positive (χY - χX > 0). There is
a good agreement between computed dipole moment for
HCN (3.02, 2.95, 3.05, D) and HCP (0.31, 0.30, 0.36 D) at
QCISD, MP2 and B3LYP levels, respectively and reported
experimental values of HCN (2.99 D) [52] and HCP (0.39
D) [53]. On the other way, neutral molecules with µ≥2.5 D
can form dipole-bound anions, unless there are atoms or
functional groups occupying the region of space where the
excess electron would otherwise be bound [54]. In dipole-
bound anions, electrons bind to polar molecules and this
issue is reported in many theoretical studies [55–57]. Anions
may have negative electron affinity (e.g., HCN) which
constituted dipole-bound anions. However, some molecules
with µ≥2.5 D have positive electron affinity (e.g., HSiN,
HGeN). Silicon and germanium atoms in HSiN and HGeN
molecules provide the region of space where the excess
electron would be bound.

Atomic charges for H, X, and Y atoms can be calculated
by different approches. AIM, Mulikan and NPA are among
them. The NPA and the AIM charges for H, X, and Y atoms
in different molecular states are compared. Though the
AIM and the NPA charges have different values, they
follow similar trends with the exception of some minor
cases. These values transform to information about chem-
istry and, especially, chemical reactivity. Among different
reactivity indicators, FF successfully predicts relative site
reactivity for most chemical systems. It also is emphasized
that the FF depends highly on population analysis schemes

Molecule H−X X≡Y

L M N O Q L M N O Q

HCN Sh Sh Sh 78.65 21.35 Sh Sh Sh 88.19 11.81

HCP Sh Sh Sh 79.34 20.66 Sh Sh Sh 82.37 17.63

HCAs Sh Sh Sh 80.24 19.76 Sh Sh Sh 81.39 18.61

HSiN IM Sh IM 85.84 14.16 IM Sh IM 62.01 37.99

HSiP IM Sh IM 88.53 11.47 IM Sh IM 84.51 15.49

HSiAs IM Sh IM 87.76 12.24 IM Sh IM 83.42 16.58

HGeN Sh Sh Sh 87.03 12.97 Sh Sh Sh 63.08 36.92

HGeP IM Sh IM 90.34 9.66 Sh Sh Sh 81.74 18.26

HGeAs IM Sh IM 89.85 10.15 Sh Sh Sh 80.72 19.28

Table 3 Classification the
nature of bonds according to
Bader et al. (L), Cremer et al.
(M), Esspinosa et al. (N) from
AIM analyses, % covalence
character (O) and % ionic
character (Q) of bonds from
NBO analyses at QCISD level
for ground states. Sh, CS and
IM are representative of Share,
Close Shell and Intermediate
interactions, respectively

Fig. 4 Occupancy of valance NAOs for terminal Y (N, P, As) atoms
in ground state of HXY species
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[58]. Calculated FF and Δf by using Eqs. 1, 2, 3 at B3LYP
level from the AIM and the NPA charges are depicted in
Supplementary material (Figs. 3aS-3iS) and (Supplementary
material Figs. 4aS-4cS) represent theΔf by using Eq. 4 from
B3LYP, MP2, and QCISD densities which are generated and
mapped onto electron density using GaussView 4.1 [59]
with isodensity setting 0.00004 atomic unit. The surfaces are
defined by the 0.002 electrons/bohr3 contour of the
molecular electronic density. The color-coded regions on
the surfaces describe red as negative and blue as positive
region. Analyses the details of figures (Supplementary
material Figs. 3aS-3iS) show in some cases there are not
agreement between calculated reactivity descriptors (f +, f −,
Δf ) values from two different charges. As an example, Δf
from AIM charges for arsenic atom in HSiAs molecule
(Supplementary material Fig. 3fS) is less than zero which
means arsenic atom is a nucleophilic region but the
prediction with the NPA charges is reverse. Predicted
electrophilic and nucleophilic character of a different region
by FF and Δf also are not compatible.

Inspection of the (Supplementary material Figs. 4aS-4cS)
shows that except for the HCP all the HXP and HXAs
groups in the three approaches have the same trends and
HXN group have irregular behavior in positioning the Δf<0
and Δf>0 regions. On the other hand based on these data

one cannot predict the exact position of the nucleophilic and
electrophilic regions.

It was pointed out that the MESP is used extensively on
qualitative and semi-quantitative levels as a probe for
locating the reactive regions in a molecule. For example,
by employing MESP contour maps, one can see the spatial
regions in which the MESP is negative and to which an
electrophile would initially be attracted [37].

Figure 3 represents MESP for HXY molecules in the
ground state which are the same in three computational levels.
The electrostatic potential plots are generated with the same
parameters as the Δf maps. In HXN species the nucleophilic
region positions on N atom but in HXP and HXAs molecules
by increasing the size of central atom the nucleophilic region
shifts from the region near X atom toward terminal atom. In
addition, analyses of the NAOs occupancy of the valance
orbitals can be used as evidence for the reactivity of HXY
species. At B3LYP level of computation variation of the
occupancy of valance orbitals of Y atoms is depicted in
(Fig. 4). Comparison of these diagrams with MESP contour
maps reveals that by increasing the nucleophilic character of
terminal atom the occupancy of the valance orbitals of
associated atom, except pz orbital, increases too.

The NBO and AIM analyses results for nature of H-X
and X ≡Y bonds at QCISD level just for ground state are

Fig. 6 Correlation between total energy at QCISD, MP2, and B3LYP level (Ec) and calculated total energy from Eq. 5 (Ece) for HXY species in
ground (a) and first excited (b) states (Hartree)

Fig. 5 Comparative diagram (a) energy and (b) X≡Y bond length for the ground state of HXY species
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given in Table 3 and in Supplementary material, Table 2S at
QCISD, MP2 and B3LYP levels for remaining states.
Results for nature of bonds are given according to Cremer
et al. [60], Esspinosa et al. [61] and Bader et al. [62]
concepts. NBO results for nature of bonds are taken from
standalone GENNBO program [63]. Most of the bonds
according to these concepts have dominated covalent
character, but none of these strategies have been found to
be universal in their application.

Data systematization

Investigating the correlation between the properties of
studied molecules, relationship between structural parame-
ters and thermodynamic properties of the smallest member
of this group (HCN) with the same properties in heavier
congers of these series have been formulated. These
formulations are illustrated in section i and ii. In section i,
a relationship between the thermodynamic properties of
HXY molecules and thermodynamic properties of HCN
(ZHXY=f(ZHCN)) is denoted. The same as section i a
correlation between bond lengths of HXY molecules as a
function of bond lengths of HCN molecule, (BLHXY=f
(BLHCN) is symbolized.

i. ZHXY = f(ZHCN)

Obtaining the correlation between thermodynamic proper-
ties of HXY molecules and thermodynamic properties of
HCN molecule, as an example, computed total energies of
HXY molecules in the ground state at B3LYP/6-311++G**
level are compared in (Fig. 5a). Assessment of this figure
reveals that energy variation in these molecules have a
regularity. Based on this regularity Eq. 5 is proposed for
calculating the total energy, enthalpy and Gibbs free energy
in ground, first excited, anionic, and cationic states of HCN
isostructures. By using this equation, calculation is done
only on HCN molecule in these states along with
computation on isolated atomic species of heavier elements
of carbon and nitrogen groups. These equations are:

ZHXY
�0" ¼ ZHCN

�0" þ EX
�0" � EC

�0"� �

þ EY
�0" � EN

�0"� �� SHXY
�0" ð5Þ

SHXY
�0" ¼ WX 6¼C

�0" þWY 6¼N
�0";W ¼ V=Een � 1 ð6Þ

In Eq. 5 ZHXY��" is the representative of total energy,
enthalpy or Gibbs free energy in ground (°), first excited (↑),
anionic (-) and cationic (+) states. Ex and EY in Eq. 5 are total

Table 4 Error percentages for calculated thermodynamic parameters from Eq. 5 in ground states at three levels

Molecule QCISD MP2 B3LYP

E H G E H G E H G

HCP 0.0087 0.0087 0.0091 0.0056 0.0056 0.0060 0.0010 0.0010 0.0014

HCAs -0.0004 -0.0004 -0.0002 -0.0008 -0.0007 -0.0006 -0.0007 -0.0007 -0.0006

HSiN -0.0216 -0.0219 -0.0208 -0.0216 -0.0217 -0.0211 -0.0267 -0.0269 -0.0261

HSiP 0.0056 0.0054 0.0063 0.0011 0.0010 0.0016 0.0024 0.0023 0.0029

HSiAs 0.0009 0.0008 0.0011 -0.0002 -0.0002 0.0000 0.0002 0.0001 0.0004

HGeN -0.0054 -0.0055 -0.0052 -0.0051 -0.0051 -0.0050 -0.0060 -0.0061 -0.0059

HGeP 0.0005 0.0004 0.0007 -0.0005 -0.0005 -0.0003 -0.0002 -0.0002 0.0000

HGeAs 0.0000 0.0000 0.0002 -0.0006 -0.0006 -0.0005 -0.0003 -0.0003 -0.0002

E, H, and G stand for total electronic energy, enthalpy, and Gibbs free energy.

H−X X≡Y

a 5
2 þ 5

100 þ g; g ¼
0 for Si

20

100
for Ge

8
<

:
5
2 þ 5

100 þ g; g ¼
5

100
for Si

45

100
for Ge

8
><

>:

b 6
100

5
2 þ 5

100 þ g; g ¼
� 10

100
for P

45

100
for As

8
><

>:

Table 5 Definition of a and b
parameters of Eq. 8
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energies of isolated X and Yatoms which can be calculated in
the same computational level as HCN molecule. Een, and V
are electron–nuclear attraction and potential energy terms of
isolated X and Y atomic species, respectively. Figure 6
exemplifies the correlation between calculated total energy
from Eq. 5 and computed total energy at three levels in the
ground state and first excited state only at TD-B3LYP level.
The error percentages for calculate thermodynamic parameters
in ground states at three levels are listed in Table 4 and for
other states are given in Supplementary material, Tables 3S.
Inspection of the data shows that the SHXY

��" parameter can
be held as the representative of the effect of interactions
between H, X, and Y atoms in HXY molecules.

ii. BLHXY = f(BLHCN)

The same as section i but for the correlation between bond
lengths of HXY molecules with the bond lengths of HCN
molecule, (Fig. 5b) exemplifies the variation of X≡Y bond
length inHXYmolecules in the ground state. According to bond
lengths variation in HXY molecules the correlation between
bond lengths of smallest member of this group and atomic total
energies of constituent isolated atoms and bond lengths of H-X
and X≡Y bonds in HXY molecules are given in Eq. 7.

BLHXY
�0" ¼ BLHCN

�0" þ 1

EX
�0" � EC

�0"� �

þ 1

EY
�0" � EN

�0"� � � UHXY
�0" ð7Þ

UHXY
�0" ¼ aWX 6¼C

�0" þ bWY 6¼N
�0" ð8Þ

where except a and b all parameters in Eqs. 7 and 8 have
similar definition to parameters in Eqs. 5 and 6. Definition
of a and b parameters are depicted in Table 5. Figure 7
illustrates this correlation for ground state and Table 6
shows the error percentages of the calculated bond lengths
from Eq. 7 in comparison with the optimized bond lengths
at QCISD, MP2, and B3LYP levels. For other states are given
in Supplementary material, Tables 4S.

Inspections of the Table 6 and (Fig. 7) show that except
some minor case (cationic HSiN at MP2 level) the H-X and
X≡Y bond lengths values which are obtained from Eq. 7 for
ground and cationic states are in good agreement with the
optimized values at three levels. In some of the anionic and
first excited states obtained values from Eq. 7 deviate from
the computed values at these three levels. Maximum value of
deviation is ~7% and belongs to anionic state. When the
HXY species have the same geometry as HCN molecule in
different states this correlation works well. This is proven by
inspection of the calculated values for cationic and first
excited states. On the other hand because the structure of
anionic HXY species differ from anionic HCN the error
percentage increases.

Conclusions

Currently, the availability of experimental data for the
system treated here (except HCN, HCP, and HSiN which

Molecule QCISD MP2 B3LYP TD-B3LYP

H-X X≡Y H-X X≡Y H-X X≡Y H-X X ≡Y

HCP 0.01 -0.15 0.18 -0.19 0.03 0.09 -3.25 0.92
HCAs -0.02 0.62 0.19 0.82 -0.04 0.54 -3.39 2.20
HSiN -0.17 0.12 0.11 2.18 0.55 0.03 -0.20 -0.71
HSiP -0.86 -0.06 -0.79 -0.05 -0.01 0.16 -1.16 4.27
HSiAs -0.98 0.14 -0.87 0.23 -0.07 0.01 -1.69 6.20
HGeN 0.38 0.67 0.43 2.18 0.27 -0.21 1.88 2.76
HGeP -0.19 -0.69 -0.29 -0.78 0.01 -0.92 1.28 6.23
HGeAs -0.13 -0.48 -0.24 -0.51 0.09 -1.04 -1.47 0.04

Table 6 Error percentages for
calculated bond lengths from
Eq. 7 in ground states at three
levels and first excited state at
TD-B3LYP level

Fig. 7 Correlation between cal-
culated bond lengths from Eq. 7
(BLce) and optimized bond
lengths at QCISD, MP2, and
B3LYP levels (BLc) for H-X
and X≡Y bonds in ground
states (unit is Å)
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they have good agreement with experimental data) is
scarce. This of course makes it difficult to discuss our
result in an experimental context and to validate our
computational data. As mentioned experimental data exist
for HCN, HCP, HSiN, and HCP+ species. Stability trends of
optimized HXY molecules in their ground states based on
the HLEG show that the HLEG of some of HXY molecules
is in the range of the HLEG of HCN, HCP, and HSiN
species. It can be concluded that molecules like HGeN in
the ground state and HCN, HSiN, and HGeN in the cationic
state can exist from the energetic point of view at these
three levels of computation. Most of the bonds according to
wave function analyses have dominated covalent character
in all states. Molecular electrostatic potential map inspec-
tion shows that in HXN species nucleophilic region
positions on N atom but in HXP and HXAs molecules by
increasing the size of the central atom nucleophilic region
shifts from the region near X atom toward terminal atom.

Electronic structure theory analysis of the heavier
congers of HCN molecule also reveals that there exists a
good correlation between structural and thermodynamic
properties of the smallest member of this group (HCN) and
heavier congers. It seems that the introduced parameters (S
and U) in Eqs. 5 and 7 besides the HCN parameters are
representative of the effect of interactions between H, X,
and Y atoms in HXY molecules.

Finally, the comparison of the QCISD, MP2, and B3LYP
show that except in minor cases there is a good agreement
between the results of these three levels.
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